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INTRODUCTION

In the present paper we prove direct and inverse approximation theorems of
the Jackson and Bernstein type for functions defined on the compact group
G = 8U(2). The main results are Theorems 3.6, 4.1, and 4.2. In distinction to
the methods of [8], where we proved Jackson type theorems for functions on
any compact manifold embedded in Euclidean space, our present proofs of the
direct theorems are constructive. More specifically, we exhibit, for each k, a
sequence of kernel functions, {kKn}, such that the convolution, kKn *f, for
any f E Ck(G), is a polynomial of degree at most n, and il f - kKn *f 11 00 =

O(n-kw(ljn», where w is an appropriate modulus of smoothness of the kth
derivatives off

Our techniques for the case k = °derive from Korovkin's work on trigono­
metric approximation. They are the same, although not necessarily recogniz­
ably so, as those used by Newman and Shapiro in [7].

One interesting outcome of the present work is the fact that for constructive
proofs of Jackson type theorems on groups, the case k = 0 is crucial, since the
case off E Ck(G), k > 0, can be reduced to it by a simple method. (See the
development following Theorem 3.5.) In the case of functions on the unit
circle, this was known, e.g. [1], p. 146, but appeared to depend on the fact that
every trigonometric polynomial without a constant term was the derivative of
another such polynomial. On multi-dimensional spaces, without a preferred
derivative operator, this approach would seem impossible. However, a careful
examination of the induction arguments in the proofs for the circle revealed
that they could be rearranged to yield a direct development, independent of the
fact about derivatives.

In [8] we proved inverse theorems of Bernstein type for a class of manifolds
which includes all compact Lie groups. As in the classical case of the circle
group, a key step was an estimate of the norm of some derivative operators
acting on polynomials. Here, where the requisite knowledge of Lie theory is
minimal, we prove a special case of the relevant inequality (Theorem 4.1).

I Most ofthe results ofthis paper are contained in the author's Ph.D. dissertation written at
Harvard University under the direction ofProfessor A. M. Gleason. The author would like to
thank Professors Gleason and R. A. Mayer.
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Now we give a brief summary of the individual sections. In Section 1, we
introduce the relevant notation, and briefly describe two invariant metrics on
G. In Section 2, we use one of these metrics to define the first- and second-order
moduli of smoothness, and we give some elementary properties of these.
Sections 3 and 4 contain the main direct and inverse theorems for polynomial
approximation on G.

1. METRICS ON SU(2)

Let G = SU(2) be the group of 2 x 2 unitary matrices with determinant 1.
An element g of G can be written

g= (a(g)
beg)

beg»)
a(g) , la(gW + Ib(g)1 2 = I,

where a(g), beg), a(g), beg) are the coordinate functions of the identity repre­
sentation ofG. As a subset ofC4, G inherits the Euclidean metric. The Euclidean
distance betweengandh E G, which we shall write as 19 - hi, is given by each of
the following equal expressions:

Ig - hl 2 = Tr(g - h)(g - h)* = 4 - 2 Tr(gh-1)

= 2(ja(g) - a(h)!2 + Ib(g) - b(h)!2).

Thus, the map g f-} (V2a(g), V2b(g» is an isometric map of G with the
Euclidean metric onto the 3-sphere of radius v2 in C2•

Another metric on G arises from the Riemannian metric on the Lie algebra,
g, ofG, determined by the Killing form. Recall that 9 constists ofall 2 x 2 skew
Hermitian matrices with zero trace. A matrix D E 9 determines a left-invariant
vector field according to

d
Df(g) = dif(gexp tD)lt~o,

The Killing form determines the Riemannian metric, (,), on G, given by

(Dt> D j ) = 4Tr(D I D;) = -4Tr(D I D j ),

(see [3], p. 269). The associated arclength metric, p, is such that if t f-}xexptD,
t E [0,1], DE g, is a minimal geodesic from x to y, then p(x, y) = IIDII =

(D,D)I/2. Under the map ofG onto the 3-sphere of radius V2, p goes over to a
constant times the great circle metric on the sphere. The constant can be found
by noting that if

D = (i7f ?),o -l7f
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then for t E [0,1], It-HxptD is a minimal geodesic from e to -e. Hence

pee, -e) = IIDII = 2(V27T) = 2 (great circle distance between poles on a sphere

of radius V2). Moreover, by comparing the great circle metric with the
Euclidean metric on a sphere, it is easy to show that

21g - hi ~ peg, h) ~ 7Tlg - hi.

We remark that both these metrics are left and right invariant.

2. MODULI OF SMOOTHNESS

By use of the metric p, we can introduce moduli of smoothness for functions
on G. First we recall that the left and right translation operators, L(g) and R(g),
are defined by

L(g)f(x) = f(g-l x), R(g)f(x) =f(xg), fE C(G).

Now we define the first- and second-order moduli ofsmoothness, by

Wl(f; h) = sup {Ilf- L(g)flloolp(g, e) ~ h}.

W2(f; h) = sup {Ilf - 2L(g)f+L(g2)flloolp(g, e) ~ h}.

These two moduli of smoothness will suffice for our work.
The following properties of Wj are proved just as in the case of periodic

functions on the real line (See [5], pp. 47-48).

PROPOSITION 2.1. lffe C(G), then

(i) Wif; h) is increasing,
(ii) wif;h) -+ Oash -+ 0,

(iii) wlf;nh)~njwif;h), n=I,2, ...,
(iv) wif; Ah) ~ (l + >.y wif; h), ,\ > 0,

for j= 1,2.

To deal with differentiable functions, we fix an orthonormal basis D 1, D2 , D3

of g, where

V8D1 = (~ _~), V8D2 = (~ ~), V8D3 = (-~ ~).
Now, by induction on k, we introduce the following notation for functionsf in
Ck+l(G):
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The following standard estimates of WI and W2 will be quite useful.

PROPOSITION 2.2.

(i) IffE C(G), then w2(f; h),,;;; 2wl(f; h).
(ii) IffE CI(G), then WI(f; h),,;;; Ilf(I)\\", h.

(iii) IffE CI(G), then wif; h),,;;; wl(f(l); h) h.
(iv) IffE C2(G), then W2(f; h),,;;; Ilf(2)11", h2.

Proof. (i) This follows from the inequalities

Ilf - 2L(g)f+L(g2)fll", ,,;;; Ilf - L(g)fll", + IIL(g)(f - L(g)fll",

,,;;; 2Wl(f; p(g,e)).
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(ii) For any g, x E G, let DE 9 be chosen so that t H- xexptD, t E [0,1], is a
minimal geodesic from x to g-l x; in particular IIDII = p(x, g-l x) = peg, e).
Then

If(x) - f(g-l x)1 = IJ~ ~f(xeXPtD)dtl

,,;;; f: IDf(xexp tD)ldt,,;;; IIDfll",.

Since we can find Cj E R with D = L cjD j and peg, e) = IIDII = (L Cj2)1I2, we
have

3

,,;;; peg, e) L IIDdll",.
1

Hence,
Ilf- L(g)fll",,,;;; 11j<I)II",p(g, e), (*)

which immediately yields (ii).
(iii) Ifwe replace f by f - L(g)fin (*), we get

IIf - 2L(g)f+ L(g2)fl\",,,;;; 11(f- L(g)f)(1 >1\", peg, e)

= (*IIDd - L(g) Ddll",) peg, e), (**)

since DjL(g)f=L(g)Dd by the left invariance of Dj E g. Now because
IIDd - L(g) Ddll",";;; wl(Dd; peg, e)), (iii) follows immediately from (**).

(iv) (ii) applied to Ddshows that (**) yields (iv).
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3. DIRECT ApPROXIMATION THEOREMS ON SU(2)

We shall consider the problem of approximatingfin C(G) by members of
the classes

EYJn = {polynomials ofdegree at mostn in a(g), b(g), ii(g), b(g)}.

These are the analogs of the trigonometric polynomials on the unit circle in R2.
Moreover, ifwe realize Gas a 3-sphere in R4, thenEYJn is just the class ofordinary
polynomials of total degree at most n, restricted to G. As usual forf E C(G), we
set

In order to find efficient and constructive ways of approximating a function
by elements of f!JJn , we need to use some facts about L 2(G; Haar measure)
(Haar measure on G coincides with the usual normalized surface measure on
the 3-sphere). U(G) is a ring under convolution, where

f* hex) = ff(g)h(g-l x)dg.

EYJn is invariant under L(g) and R(g), hence it is a twosided ideal. Thus
Hn = f!JJn n EYJ;;-_l is an ideal; in fact Hn is the minimal twosided ideal in L 2(G)
corresponding to the unique irreducible representation of G of dimension
n + 1 ([6], p. 91). If Xn is the character of this representation, then Xn ..l Xm,
n =j:. m, and Xn is real. The orthogonal projection of L2(G) onto Hn is given by
convolution with (n + 1) Xn (see [4], in particular §40). (We remark that if we
consider G to be the 3-sphere, then H n is just the space ofspherical harmonics of
degree n.)

We now adapt a technique of Korovkin for approximating on the circle
group ([2], pp. 336-9 and [7]). Thus, we first examine some properties of
positive kernels Kn in EYJ..

LEMMA 3.1. IfKn = 1 + 2.7 rk(k + l)Xk and Kn > 0, then

I Kn(g)p2(g,e)dg~47T2(l-rl)'

Proof From the inequality p(x, y) ~ 7Tlx - yj, and the fact that Ix - Yl2
= 4 - 2Tr(xy-l), we have

Since X\(g) = Tr(g) is the character of the identity representation,
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f Kig)p2(g,e)dg<;1T2J(1 + ~rk(k+ l)xk(g») (4- 2Xl(g»dg

= 41T2(1- ra
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by the orthogonality relations for the characters.
This leads to an estimate of IIKn *f - f II", for kernels of the given type. Since

f!lJn is an ideal, Kn * fwill be inf!lJm and thus we get an upper bound for Eif).

PROPOSITION 3.2. Let Kn= 1 + L~ rnk(k + l)xk' and suppose Kn? 0. Thenfor
any d> 0, andfE C(G),

(i) I\Kn*f-fll",<;(1 +41T2d2(1-rnl»wif; lId),
(ii) IIKn*f - fll", <; (1 + 21Td(1 - rn l)I/2) WI(f; lid).

Proof (i) Since any g EGis conjugate to g-I, and each Xn is constant over
conjugacy classes, we have Xig) = Xn(g-J), and consequently KnCg) = KnCg-1).

Thus,

by the invariance of Haar measure under inversion. Since

we have

f(h) = f Kn(g)f(h)dg.

Thus

IKn *f(h) - f(h) I = 1- iI Kn(g) (f(g-I h) - 2f(h) +f(gh»dg/

< t f Kn(g) If(g-' h) - 2f(h) +f(gh) Idg

<1 I Kig)wif; p(g,e»dg,

as Kn? 0. Now, by Proposition 2.1 (iv), with h = lld,.\ = dp(g, e), we have

wlCf;p(g, e» <; (1 + dp(g, e»2 w2(f; lid)

< 2(1 + d2p2(g, e» w2(f; lId).
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IIKn *I-Ill" <. W2(f; lId) f Kig) (I + dZpZ(g, e))dg

=wz(f; l/d)(l +d2f Kn(g)p2(g,e)dg)

<. (1 + 47T2d2(l - rnI))wz(/; lId),

by Lemma 3.1.
(ii) is proved similarly, using the estimate

To apply this proposition, we shall exhibit a sequence ofpositive kernels, Km

for which 1 - rnl <. C 1/n2
•

LEMMA 3.3. For each n, set

where
. k+ 1

ak = sm--
2

7T,
n+

and

Then
2n

K2n = 1 + 2 r2n,k(k + 1) Xk;;;;' 0,
I

Proof. First write

and
7T

r2n I = cos--
2

·. n+

n

(ao XO + .. ,+ anx.h = 2 ai
2Xl2 + 2 2 alaJ Xl XJ'

o I<J

The Clebsch-Gordan series for G shows that if i <.j, then

i

Xi XJ = 2 XJ+i-2k
k~O

([9], p. 128). Thus, in expressing (2 aiXi)2 as a sum of Xi' we pick up Xo only
from the X? terms, and Xl only from the terms XiXi+b i <. n - 1. Also, the
highest order term that appears is X2., from the expansion of X.2. Thus,

(~al Xl)2 = (~aI2) Xo + ("~ alal+ I) 2Xl + ... + a,.2 X2,.,
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'Tr 'Tr . i+l . i+l
cos --2a/ = cos--

2
sm --2 'Tr sm --2 'Tr

n+ n+ n+ n+

(
,i+2 . i ),i+l=! sm--

2
'Tr+sm--

2
'Tr sm--

2
'Tr

n+ n+ n+

=·Haiai+1 +ai_Iai) (a-1 =an+1 =0),
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(
'Tr) . n+l

K2n = 1 + cos n + 2 2XI + ... + An sm2n + 2 'TrX2n'

We remark that it is not difficult to show that the given choice ofai maximizes
r2n,1 = 2:1-1 alai+d'2J a1 2

• Moreover, it is a mysterious fact that the same
maximization problem occurs in connection with approximation on the circle
(see [2], p. 337).

From here on, K2n will stand for the function defined in Lemma 3.3. Also,
for odd integers 2n + 1, we define K2n+1= K2n. Now we combine the two
previous results to prove the analog of Jackson's theorem for continuous
functions on SU(2).

THEOREM 3.4. IIIE CCG), then

(i) EnC!).;;;; IIKn*1-/1100';;;; (I + 8'Tr4)W2(f; lin),
(ii) EnC!).;;;; IIKn*1-/1100';;;; (1 + 2 J2'Tr2)wI(f; lin).

Proof. As noted earlier, since KnE rYn, Ei!) .;;;; IIKn*1-/1100' On the other
hand, the inequalities on the right of (i) and (ii) follow from the two previous
results. We consider the details only for (i) in case n = 2m.

We apply Proposition 3.2, with d = 2m. Then, since

2

1 -1 'Tr _ . 2 'Tr 'Tr- r2 1- - C08~'-' - 28m --~.---,;::_._-_.. -
m, m + 2 2(m + 2) "" 2(m + 2)2 '

we have
IlK2m *1-/1100';;;; (1 + 16m2

7T
2(1- r2m,t))W2(f; 112m)

.;;;; (1 + 87T4)W2(f; 112m).

COROLLARY 3.5. III E C 2(G), then

IIKn *1-/1100 ,;;;; (1 + 8'Tr4)11j<2)lloon-2.
31
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Proof Simply use the estimate of w2{f; lin) given by Proposition 2.2 (iv),
in part (i) of the previous theorem.

We shall use this corollary to prove Jackson-type theorems forfin Ck(G).
To do this, we introduce the following kernels:

(If oe is the point mass at e, then we have the explicit formula kKn =
oe - (oe - Kn)*(k+1), where (oe - Kn)*(k+1) = (oe - Kn) * (oe - Kn)*k.) Now we
can prove the desired

THEOREM 3.6. (i) Iff E C 2k(G), then

En(f) ~ IlkKn *f - fll" ~ Ckn-2k wij<2k); lin),

where Ck = (1 + 87T4)k+!.
(ii) IffE C2k+!(G), then

EnCf) ~ IIk+1Kn *f - fll" ~ (1 + 2 J27T2) Ckn-2k-1 w2(f(2k+1); lin).

Proof The left-hand inequalities are clear, since kKn E f7Jn. The proof of the
right-hand inequality in (i) is by induction on k; k = °is Theorem 3.4 (i). Now
assume (i) is true for k. By the definition of k+!Kn> we have

Because k + 1> 0, we have fE C2(G), so Corollary 3.5 applied to
g = f - kKn *fyields

IIKn * g - g II" ~ (1 + 87T4
) (2:. IIDI D j gil,,) n-2

• (**)
I,J

To estimate IIDI D j gll"" we note that, since for any DE 9 and differentiable
f, D(h *f) = h * Df, we have

Now, the induction hypothesis applied to D I Djf E C 2(G) gives

If we substitute this in (**), and take into account (*), we get the desired result
for k + 1.
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(ii) This is derived from (i) as follows. Sincef E C2k+I(G) s; CI(G), we may
apply Proposition 2.2 (iii) to g = kKn *f - f, to conclude

wI(g; h) <; (t IlkKn * Dd- Ddll",) h.

Thus, by Theorem 3.4 (ii), we get

1Ik+ I Kn *f - fll", = IIKn *g- gil",

<; (1 + 2 J21T
2)n-1 (t IlkKn * Dd- DdII",).

The use of part (i) of the present theorem to estimate the last sum, yields (ii).

COROLLARY 3.7. Theorem 3.6 holds, with 2wI in place ofW2'

4. INVERSE THEOREMS ON SU(2)

We now consider the inverse problem of inferring differentiability and
smoothness properties from the behavior of En(f). As for the circle group, the
key is the following analog of Bernstein's inequality for the derivative of a
trigonometric polynomial.

THEOREM 4.1. If Pn EfJJJn and DE g, then IIDpnll", <; CnIIDIIIIPnll"" where
C= 8-1/2•

Proof. We reduce the result to showing that IDI Pn(e)1 <; CnIIPnll",. The proof
of this case is as follows. Since

(
eXP(itC) 0 )

exp tD I = 0 exp (-itC) ,

we have a(exptDd = exp(itC), b(exptDI) =0. Thus, aSPn is a polynomial in
a, ii, b, b of total degree at most n, Pn(exptD 1) = Tn(e(t)), where Tie) is an
ordinary trigonometric polynomial of degree n, and e(t) = tc.

Now,

D 1 pie) = ~ piexp tD.)!t=o = CTn'(O),

and by Bernstein's inequality, IITn'll", <; nllTnll"" Thus, IDI Pn(e)! <; CnIIPnll"" as
desired, because IITnll", <; IIPnllro.

To reduce to the case just considered, we first note that DPn(x) =

L(x-I) Dpn(e) = D(L(x-l
) Pn)(e), L(x-I) Pn E fJJJm and IIL(x-I) Pnll", = IIPnllro'

Thus, replacingpn by L(x- I
) Pm we can consider only derivatives at e. Second,

for any D E g, there exists g E G with D = liD II g-I D I g. (This is just the state-
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ment that any skew-hermitian matrix is unitarily equivalent to a diagonal
matrix with pure imaginary entries.) Hence,

d
Dpn(e) = dtPnCexptD)lt=o

= ~pnCrl(exPtll Dli D1) g)lt=o

d
= dt (L(g)R(g) Pn)(exp t[1 D II Dl)lt~o

= liD II D1(L(g)R(g) Pn)(e).

Since L(g) R(g) Pn E f!JJ", we have reduced to the case considered.
With the estimate of this theorem, we can proceed exactly as in the case of the

circle group. We state the desired theorems with a few remarks and refer to the
circle group case in [5], pp. 58-62, for detailed proofs.

THEOREM 4.2. There exist Cj > O,j = 1,2, such that for f E C(G),

(i) Ilf- L(g)fll",';; C1 peg, e) L' En(f), and
(ii) Ilf - 2L(g)f+L(g2)fll", .;; C2 p2(g, e) L' (n + 1) En(f),

where L' is the sum over n.;; I/p(g, e).

THEOREM 4.3. If Ll jk-l Eif) < ctJ, then f E Ck(G). Moreover, there exists
C> 0, independent off, such that ifD k = Di ] Di2 ••• Dik, im E {1,2,3}, then

En(Dkf).;; C L f- I Eif)·
j>n/2

Finally, we can use these theorems to characterize those classes of functions
for which En(f) = O(n-r

).

THEOREM 4.4. fE Ck(G) and w2(f(k); h) = O(h"), °< ~.;; 1, if and only if
En(f) = O(n-k-"). Moreover, if ~ < 1, then w2(f(2); h) may be replaced by
wl(f(l); h).

The proofs of these three theorems follow those of [5], pp. 59-62, once we
make the following remarks. One, since f!JJn is right invariant, and D Egis an
infinitesimal right translation, Df!JJnr;:;. f!JJn. Two, Theorem 4.1 replaces Bern­
stein's inequality. And finally, Proposition 2.2 supplies some needed estimates
for wip; h) in terms ofllp(j)II",.
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